COP 3330: Object-Oriented Programming
Summer 2011

Classes In Java — Part 1
Inheritance

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3330/sum2011

Department of Electrical Engineering and Computer Science
Computer Science Division
University of Central Florida

COP 3330: Classes In Java—Part 1 Page 1 © Dr. Mark Llewellyn

Classes In Java

A class Is a group of objects that share common state
and behavior. A class is an abstraction or description of
an object.

An object, on the other hand, Is a concrete entity that
exists in space and time.

OO languages use classes to define the state and
behavior associated with objects and to provide a means
to create the objects that make up a program.

Thus, the class acts as a blueprint or template from
which objects can be created (instantiated in OO terms).

— While car Is a class, my car and your car are two Instances
of the class.

’

COP 3330: Classes In Java - Part 1 Page 2 © Dr. Mark Llewellyn g").

Classes In Java

We’ve already seen the UML notation for describing a
class, and we will continue to use and expand on this
notation as we delve deeper into classes in Java.

One thing that you want to get straight now Is that
developing a class and using a class are two distinct
tasks.

Developing a class, ultimately, requires that you know
all of the inner details of the class and how it works.

Using a class does not require that you know anything
about how the class actually works, only in how you
can utilize the class to solve the problem at hand.

’

COP 3330: Classes In Java — Part 1 Page 3 © Dr. Mark Llewellyn g").

Classes In Java

« As an example of this concept, consider the UML diagram of a
Loan class as shown below:

- annuallnterestRate: double
- numberOfYears: int

- loanAmount: double

- loanDate: java.util.Date

+ Loan()
+ Loan(annuallnterestRate: double, numberOfYears: int, loanAmount:double)

+ getAnnualinterestRate(): double

+ getNumberOfYears(): int

+ getLoanAmount(): double

+ getLoanDate(): java.util.Date

+ setAnnualinterestRate(annuallnterestRate: double): void
+ setNumberOfYears(numberOfYears: int): void

+ setLoanAmount(loanAmount: double): void

+ getMonthlyPayment(): double

+ getTotalPayment(): double

COP 3330: Classes In Java—Part 1 © Dr. Mark Llewellyn

Classes In Java

 Now, let’s write a class that uses the Loan class without
ever worrying about how the loan class is actually
Implemented.

 |n other words, we can use this class without knowing
anything more about the class than the methods (and
variables) that are available to us outside of the class.
The implementation details of this, for example, how
the monthly payment is calculated, are not important for
us to be able to utilize the class.

« If you want to run the test class, I've put the
Loan.java source code file on the course web site.

’

COP 3330: Classes In Java — Part 1 Page 5 © Dr. Mark Llewellyn g").

-
[¥] Rectangle.java [rIII Thing.jawa [rm Loan.jawva [M@ WindChilljawva

& // a class to test the Loan class[]

import java.util.Scannexr;

pollic class TestLoanClass |
SE% Main method =/
= poblic static vold main(String[] arxrg=s) {4
S Create a Scanner
Scamnner input = new Scanner (Sy=tem. in)
A Entcer yearly intersest ratce
Sv=rtem.ocut.print (

"Enter wvearly interest rate, for examplse Z.25: ")
donble anmnuallinterestRate = input.nextDouble () -
S Enter number of yvears
Syvstem.ocutbt.print ("Enter number of year=s a=z anm integexr: ") »
int numberOfYears = input.nextInt ()
4 Enter loan amount
SvEsrcem.ocuntbt.print ("Enter loan amount, for example 120000.95: ") ;
donlxle loanfbmowanit = input .nextDouble () -

S Create Loam objecto
Loan loan =
new Loan{(anoDoualinterestRate, numberOfyears, loanfamount) ;
S4 Format to keep two digits after the decimal point
donlxle monthl yvPavment =
(int) (loan.getMonthlyFPayment () = 100) JF 100.00;
donlle totalPavment =
(int) (loan.gecTocalPayment () * 100y 4 100.00;
I 4 Display results

System.ocuab.println ("The loan was created oo ™ 4+
loan.getlLoanDate () .tcoString () 4+ "“nThe monthly payment is S 4+
monthlyPayment 4+ "‘“"'nThe total payvment will bhe £ " 4+ totalPayvment) ;

YA Arend main metchod
Y rend TestLoanClass

COP 3330: Classes In Java — Part 1 Page 6 © Dr. Mark Llewellyn

= Java - Eclipse“ - “ E@lﬂ

‘| Eile Edit MNavigate Search Project Bun Window Help

ri-H@ H-0- Q- @ G-
SO A P E e

[(& Java

Two Different Executions

(EL Problems (@ Javadoc (@; Declaration |/E Conzole &3

=

<terminated> TestloanClass [Java Application] Ch\Program Files'\Javaljrebin'javaw.exe (May

. % %| G BBEE) ot & -0y -

= g of the TestLoanClass
= Application

(m

Enter number of years as an integer: 10
Enter loan amount, for example 120000.95:

The monthly payment i= £174.16
The total payment will be £ 20899.52

Enter yearly interest rate, for example 8.25: 7.0 -

15000 El

The loan was created on Wed May 25 15:15:14 EDT 2011

=

|
= Java-EcIipse“ - . - _ -:-El-g

‘| Eile Edit Mavigate Search Project Bun Window Help

~-EH@& BrO0-Q- H#OE- H
=T R R SR CR R
o — ™
(2! Problems (@ Javadoc ﬂ% Declaration (E Console 3 =
= &

<terminated=> TestLoanClass [Java Application] ChProgram Files'\Java'jreftbin'javaw.exe (May o

: X %|GEIEE =B -9

Enter yearly interest rate, for example 8.25: £.5 -

Enter number of years as an integer: 25 =

Enter loan amount, for example 120000.95: 450000 El

Il'he loan was created on Wed May 25 15:16:17 EDT 2011

The monthly payment i=s £3623.52

The total payment will be £ 1087056.56 =
#

COP 3330: Classes In Java—Part 1 Page 7 © Dr. Mark Llewellyn

Classes In Java

« To fully illustrate this point, I’ve created a class named
WindChill as defined in the UML diagram shown below. I’ve
Implemented this class and placed the WindChill.class file
on the course code page. (PRACTICE PROBLEM #2) — 1 want
you to write a small test program that will use this class to
determine the wind chill for various conditions that you will
input. We’ll see how you did next class.

WindChill

— theTemp: double

- the WindSpeed: double

- windChillTemperature: double
— whatltFeelsLike: int

+ WindChill(tempinF:double, windSpeedinMph: double)

+ getTemperature(): double
+ getWindSpeed(): double
+ getThePerceivedTemperature(): int

COP 3330: Classes In Java—Part 1 © Dr. Mark Llewellyn

Inheritance Revisited

« OO languages allow you to derive new classes from
existing classes via inheritance.

 [nheritance is a powerful component of OO languages
that allow the software developer to reuse software.

« Without knowing it (perhaps), you have already been
using Inheritance when you developed your first
programs for this course. This Is because every class In
Java Is Inherited from an existing class, either explicitly
or implicitly. All of the classes you’ve constructed so
far, as well as all of those in the notes have implicitly
extended (inherited from) the java.lang.Object
class.

’

COP 3330: Classes In Java — Part 1 Page 9 © Dr. Mark Llewellyn g").

'& Object (Java Platform SE 6] - Windows Internet Explore: ==

° 5 CI———— 155 x | icE—]

N

File Edit View Favorites Tools Help x %_:ICu-mrert - @Sebecﬁ

x Go 3|E - ﬂ Search - ++ More 2> . SignlIn & -

o Favorites | 915 (@ Suggested Sites v @ | Free Hotmail g Web Slice Gallery = ' KeepVid- Download and s...

x>

[@) Object (Java Platform SE 6) fii ~ B ~ =] #h - Page~ Safety~ Tools~ @~

s

‘;i::da;lg:rén “'| overview Package [IIYTJUse Tree Deprecated Index Help Java™ Platform |=|

PREV CLASS MEXT CLASS FRAMES MO FRAMES Standard Ed. 6
All Classes SUMMARY: NESTED | FIELD | CONSTR | METHCD DETAIL: FIELD | COMSTRE | METHOD

Packages
iava.applet java.lang

‘l_n,_rL Class Object

Object
—-I'—[::'GI ect Java.lang.Object
OBJECT MNOT _EXIST
CbjectAlreadyActive

ObjectAlreadyActiveHel public cla=zs Object
ObjectChangel istener

ObjeclFactory Class cbiject is the root of the class hierarchy. Every class has cbiect as a superclass. All objects, including

gg;:g{ﬁgrm‘g:yﬁund&r arrays, implement the methods of this class.
Ubjecinelper

ObjectHolder]
CbjectldHelper | Since:

ObjectidHelper N JDK1.0
Cbjectimpl See Also:

Objectinput
ObjectlinputStream

ObjectinputStream. Getf
ObjectinputValidation _ | [(Constructor Summar}'

[T N U R —

4 | 1] [3

Ohent ()
Done &) Internet | Protected Mode: Off

F 1 —— T —

COP 3330: Classes In Java—Part 1 Page 10 © Dr. Mark Llewellyn

Inheritance Revisited

« In Java terminology, a class C1 extended from another class C2
Is called a subclass, and C2 is called the superclass.

» A superclass can also be called a parent class or a base class, and
a subclass may be referred to as a child class, extended class, or a
derived class.

C2 (superclass)

JZAN

Cl (subclass)

When two classes are related
by inheritance, the is-a
relationship will apply to the
classes.

The is-a relationship holds
between two classes when
one class is a specialized
instance of the second.

COP 3330: Classes In Java—Part 1

Page 11

© Dr. Mark Llewellyn

Five Forms Of Inheritance

Form of Inheritance

Description

Specification

The superclass defines behavior that is implemented in the subclass but not
in the superclass; this provides a way to guarantee that the subclass
implements the same behavior. (In short, the superclass defines what the
subclass must do, but does not specify how it is to be done.)

Specialization

The subclass is a specialized form of the superclass but satisfies the
specifications of the superclass in all relevant aspects. (In short, there is an
is-a relationship between the subclass and the superclass.)

The subclass adds new functionality to the parent class but does not change

Extension any inherited behavior.
The subclass restricts the use of some behavior inherited from the
Limitation superclass. Typically, the inherited behavior that is limited is set as a no-
operation in the subclass, i.e., the operation still exists but has no effect on
the state of the object on which it is invoked.
L The subclass inherits features from more than one superclass. This is not
Combination

(Multiple Inheritance)

implemented in Java, although through the use of interfaces there are ways
around this limitation in Java.

’

COP 3330: Classes In Java - Part 1 Page 12 © Dr. Mark Llewellyn g").

Inheritance In Java

Suppose we are given the task of designing some
classes to model geometric objects like circles, square,
and rectangles.

These geometric objects share many common properties
and behaviors. They can be drawn in a certain color
and be either filled or unfilled.

What 1s the best way to design this set of classes?
(HINT: use inheritance!)

Using a top-down approach, meaning let’s think In
general terms first and then move to the more specific
(specialization).

’

COP 3330: Classes In Java - Part 1 Page 13 © Dr. Mark Llewellyn g").

Inheritance In Java

« We’ll consider the general case of geometric objects
first, and define a class GeometricObject, that will

be used to model all geometric objects.

GeometricObject

— color: String //color of the object (default: white)
- filled: boolean //filled or not filled — (default: false)
- dateCreated: java.util.Date //date of creation

+ GeometricObject() //constructor

+ getColor(): String //returns the color

+ setColor(color: String): void //sets a new color

+ isFilled(): boolean //returns the filled property

+ setFilled(filled: boolean): void //sets a new filled property

+ getDateCreated(): java.util.Date //returns the dateCreated

+ toString(): String // returns a string representation of the object

UML class diagram for
GeometricObject class

#
COP 3330: Classes In Java—Part 1 Page 14 © Dr. Mark Llewellyn @j

Inheritance In Java

« Now If we consider a circle, we realize that it Is just a
special case of a geometric object. Hence, while it has
some special properties of its own (those that make it a
circle), it also shares certain properties with all other
geometric objects.

« Thus, using Inheritance allows us to view a circle as
simply a special case of the more general geometric
object. In this way, we can allow the circle objects to
share its common properties and methods with other
geometric objects.

e It makes sense to define a Circle class than extends
the GeometricObject class.

’

COP 3330: Classes In Java - Part 1 Page 15 © Dr. Mark Llewellyn g").

Inheritance In Java

« Here is our definition for the Circle class. Notice at this point,
that all we have is the Circle class and we have not yet shown
that It extends or Is related to the GeometricObject class.
We’ll do that in a minute.

Circle

- radius: double

+ Circle() // generic constructor

+ Circle(radius: double) //overloaded constructor

+ getRadius(): double //returns the radius

+ setRadius(radius: double): void //sets a new radius
+ getArea(): double //returns the area of the circle

+ getPerimeter(): double //returns the perimeter

+ getDiameter(): double //returns the diameter

+ printCircle(): void // prints the properties of the circle

UML class diagram for Circle
subclass

#
COP 3330: Classes In Java—Part 1 Page 16 © Dr. Mark Llewellyn @j

Inheritance In Java

« Now If we consider a rectangle object, we
realize that, just like the circle object, it Is just a
special case of a geometric object.

 Thus, we’ll define a rectangle class that will
Inherit from the geometric object class in exactly
the same way that the circle class will inherit
from the geometric object class.

« Just as It did for the circle objects, it makes
sense to define a Rectangle class than

extends the GeometricObject class.

”

COP 3330: Classes In Java—Part 1 Page 17 © Dr. Mark Llewellyn g’);

Inheritance In Java

* Here Is our definition for the Rectangle class. Notice at this
point, that all we have is the Rectangle class and we have not

yet shown that it extends or

IS related

GeometricObject class. We’ll do that next.

Rectangle

— width: double
- height: double

+ Rectangle() // generic constructor

+ getWidth(): double //returns the width

+ setWidth(width: double): void //sets a new width

+ getHeight(): double //returns the height

+ setHeight(height: double): void //sets a new height
+ getArea(): double //returns the area

+ getPerimeter(): double //returns the perimeter

+ Rectangle(width: double, height: double) //overloaded constructor

UML class diagram for Rectangle
subclass

to the

COP 3330: Classes In Java—Part 1 Page 18

© Dr. Mark Llewellyn

GeometricObject

- color: String
- filled: boolean
- dateCreated: java.util.Date

+ GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date
+ toString(): String

JZAN

I I
Circle Rectangle
- radius: double

— width: double
- height: double

+ Circle()
+ Circle(radius: double) + Rectangle()

+ getRadius(): double _ + Rectangle(width: double, height: double)
+ setRadius(radius: double): void + getWidth(): double

+ getArea(): double + setWidth(width: double): void
+ getPerimeter(): double + getHeigth(): double

+ getDiameter(): double + setHeight(height: double): void
+ printCircle(): void + getArea(): double

+ getPerimeter(): double

COP 3330: Classes In Java—Part 1 Page 19 © Dr. Mark Llewellyn

[J] TestLoanClass.java W_@] Circle.java \I [J] Rectanglejava \I [J] TestCircleRectangle. \I}}LE

- % GeometricObject Class - Clas=ze=z In Javal
#* nsed to illustrate inheritance in OO0 Java

* MJL Mav 25, 2011

*# HNo known bugs

* f GeometricObject class
puablic class GeometricObiject {

private String color = "white™;

private boolean filled;
private java.util.Date datelCreated:

S* Construct a default geometric object */

puablic GeometricChiject () {
ff&ﬂgﬂgﬁ;ﬂg following line for constructor chaining display
Svestem.ocut.println("In GeometricObject default constructor method™) ;
dateCreated = new Jjava.util.Date () :

Yo end default constructor

S* Return color */f

public String getColor() {
retorn color;

Y}/ end getColor method

/% Bet a new color */

puablic wvoid =setColor(String color) {
this.color = color;

Yo end setColor method

¥ Beturn filled. S5ince filled i= boolean,
so, the get method name is isFilled =/
poblic boolean isFilled () {
retnrn filled:
}//end isFilled method

COP 3330: Classes In Java — Part 1 Page 20 © Dr. Mark Llewellyn

« Java - Classes In Java/src/GeometricObject.java - Eclipse @m
[e

File Edit Source Refactor Nawvigate 5Search Project Bun Window Help
B & H-Q-Q~ HE~ @O 5~ P GeometricObject class
TR S S (continued)
= ~
[Circle,java] n Rectangle,java] [TestCircleRectangle.]}}19 =
/* Set a new filled */ B O

public void setFilled(boolean filled) {
thi=.filled = filled:
}//end setFilled method =

/* Get dateCreated */

public java.util.Date getDateCreated() {
return dateCreated:;

}//end dateCreated method

/* Beturn a string representation of this object #*/
public String toString() f{
return "created on " + dateCreated + "\ncolor: " 4 color 4
" and filled: "™ + filled;
}//end toString method

}//end class GeometricCbiect E
1 b

Writable Smart Insert 1 7B @ @, E

COP 3330: Classes In Java — Part 1 Page 21 © Dr. Mark Llewellyn

| *GeometricObject.jav M@ Rectangle.ava \I [J] TestCircleRectangle. \I 139

= /% Circle Class — Classes in Java
Extends GeometricObhject class — used in inheritance example
=
* MJL May 25, 2011
HNo known bugs
*

Circle class

poblic cla=s=s Circle extend=s GeometriclChbiject {
private donoble radiuas:

S* default constructor */
= poblic Circle () {
ff&ﬂgﬂﬁﬁ;ﬁg Following linme for constructor chaining displavwy
Svtem.cutbt.println("In default Circle constractor.™):
}/fend default constructor

S* radius specific constructor)
= polxlic Circle (donolble radiuaus) {
IIEEEEEEEEE Ffollowing lime for constructor chaining displawy
Svatem.ocvut.println("In radius specific Circle constructoxr.™)
thi=s.radiu=s = radius:;
Y}/ /Ffend radius specific constructor

S* BReturn radius *=f
= polxlic donble getBRadiuas () {
retorn radius;
Y/ /end getRadius method

COP 3330: Classes In Java — Part 1 Page 22 © Dr. Mark Llewellyn

*GeometnicObject.jav M@I Rectangle.,java 1 [TestCircleRectangle. \I}}lﬁl

¥ B5et a new radius */
L= public wvolid setRadius (double radius) {
this.radius = radius: Circle class
Y/ end setRadis=su method (cmﬂmued)

S* Return area */
= puklic doable getihreal() 1
retorn radiu=s * radiu=s * Math.PI:;
}//end gethrea method

JS* Return diameter */
L= public dookble getDiameter () 1
retorn 2 * radius=s;
}/Send getDiameter method

/% Return perimeter =/
= pakxlic doable getPerimeter() {

retorn 2 * radius * Math. PI:
}y//end getPerimeter method

S* Print the circle info */
= public wvold printCircle() {
Svetemn.cut.println ("The circle i=s created " 4+ getDateCreated() +
" and the radius i= " 4+ radiuas=s):
}//end printCircle method
Y/ /end Circle class

COP 3330: Classes In Java — Part 1 Page 23 © Dr. Mark Llewellyn

lJ| *GeometricObject.jav ﬂII Circle,java M@I TestCircleRectangle. 1 19

= % glass EREectangle - Classse=s in Java
* Extends GeometricChiect class — inheritance exXample

* MJL May 25, 2011
* No known bugs Rectangle class

public cla=s=s Rectangle extends GeometricChbject {
private douoble width;
private douoble height:

/% default constructor */
public Rectangle () {
ff&;ﬁﬂgﬁ;ﬂ& following line for constructor chaining display
System.ocut.println ("In defaunlt Rectangle constructor.™):
}y//end default constructor

S* length and width specific consStructor =/

public REectangle (double width, dooble height) {
IIEEEHEEEEE following line for constructor chaining display
Svyvstem.cut.println("In length and width specific Rectangle constructor.™) !
thi=.width = width:
thi=s.height = height:

Y/ end length and width specific constructor

JS% Return width #*/

public doable getWidthi() 4
retorn width;

}//end getWidth method

COP 3330: Classes In Java — Part 1 Page 24 © Dr. Mark Llewellyn

*GeometncObject.jawv r-EI Circle.awva r-EI Rectangle.jawva = [J] TestCircl

% Set a mew width #*/F

= poblic void secWidtch (dooble width) { Rectangle class
this.width = width; (continued)

YA end setcWidth method

A% Return height *./
= palzxlic donlble getHeight () 1
retorn height:
¥ rend getcHeight method

S* SBet a new height =/
= palxlic wvolid setHeight (doaolle height) 4
this.height = height:
Yo orrend secHeight method

¥ EBEeturn area =,
= palzxlic donlkle getiirea() 4
retorn width * height:
Y, end gethrea method

/% Return perimeter */
= palzxlic donlle getPerimetex () 1

retorn 2 % (width 4+ height) :
Y,/ end getPerimeter method

P Send Rectangle class

F

COP 3330: Classes In Java—Part 1 Page 25 © Dr. Mark Llewellyn

-

>

fm *GeometricObject.jawv rm Circlejava (m Fectangle.java rm TestCircleRectangle. &2 15

= % TestCircleBRectangle Class
a driver class Cto test the imheritance hierarchy developed

* msing the GeometricCbhject =uperclass=s

* MJL May 25, 2011 TestCircleRectangle class—
* No known bugs Adriver class
ol

poblic oclass TestCircleRectangle {
= paolxlic static void main(String[] args) 1

Circle circle = new Circle (1) :

Svyvestemn.out.println("as circle " 4+ circle.toString()) -
Svetem.ocut.println ("The radius=s i= " 4+ circle.getRadiuas=si()):
Svstem.ocubt.println("The area i=s " 4+ circle.getiAreal)):
Syvztem.cub.println ("The diameter i= " 4+ circle.getDiametexr()) -

Syveztem.cut.printlini() -

FEectangle rectangle = new Rectangle (2, 4) 7

Svstem.ocoubt.println (A rectangle " 4+ rectangle.toStringl())
Syvstem.cub.printiln("The area i=s " 4+ rectangle.gethreal()) -
Svstem.outbt.println ("The perimeter i=s " 4+ rectangle.getPerimetex ()) :

Syetem.cut.princlin()

Rectangle rectangle?Z = new Rectangle (&, 39):
rectangle’Z.sectColor{"bBlu=e™) :
rectangle? . setcFilled (trae) ;

Svstem.ocubt.println (A rectangle " 4+ rectanglelZ.toStrxringl()) s
Svstem.cubt.printliln("The area is " + rectangleZ.gethrea()) :
Svstem.ocout.println("The perimeter i= " 4+ rectanglelZ . getPerimeter ()) !

S end main method

YoSend cla=ss TesztlCircleRectangle

COP 3330: Classes In Java—Part 1 Page 26 © Dr. Mark Llewellyn

= Java - Classes In Java/src/TestCircleRectangle.java - Eclipse i EE

File Edit Sowurce Refactoer MNavigate 5Search Project Bun Window Help

i~ B @& -0~k FE- SS = (&l ave]

P A EN B3 e-~

(Elgonsale - ® % B EEE) =+ B~ 5)
<terminated> TestCircleRectangle [Java Application] C:hWProgram Filesh Javahjrefh bin'javaw.exe (May 25, 2011 3:28:24
In GeometricObhject default construactor method -
In radius specific Circle constructor.

A circle created on Wed May 25 15:28:249 EDT 2011

color: white and filled: false

The radius iz 1.0

The area is 3.1415226535897893

The diameter is 2.0

In GeometricObject default construactor method

In length and width specific Rectangle constractor.
8 rectangle created on Wed Mawy 25 15:28:249 EDT 2011
color: white and filled: false

The area i=s &.0

The perimeter i=s 12.0

In GeometricCObiject default construactor method

In length and width specific Rectangle construactor.
8 rectangle created on Wed Mawy 25 15:28:249 EDT 2011
calor: bBlue and filled: tTrue

The area i=s 54.0

The perimeter i=s 30.0

it
L

s @ e B[E

COP 3330: Classes In Java—Part 1 Page 27 © Dr. Mark Llewellyn

= Java - Classes In Java/src/TestCircleRectangle java - Eclipse 98

= | B [

B

E TR -~ T T e e -

File Edit 5Sowurce Refacter Mavigate 5Search Project Bun Window Help

s~ H @ B0 QU WO @S - = [)

erminated> TestCircleRectangle [Java Application] C:\Program

In GeometricObject default constructor method
n radius szpecific Circle constructor.
L c S T 2011
caolor: white and : al=se

The radius i=s 1.0

&l Cons V. ﬁ&ﬁl ugﬁlf >~ [f-— 0O

YavahjrebhbinYjavaw.exe (May 25, 2011 3:28:24

The area i=s 3.141592653589793
The diameter is 2.0

In GeometricObject default constructor method

In length and width =specific Rectangle constructor.
A rectangle created on Wed May 25 15:28:24 EDT 20173
color: white and filled: false

The area i=s 8.0

The perimeter i= 12.0

In GeometricObject default constructor method
In length and width specific Bectangle constructor.

L rectangle created on Wed HMawy 25 15:28:24 EDT 201

Notice that the superclass
object is created first followed
by the subclass object. A
Circle objectis-a
GeometricObject. More
details on this (constructor
chaining) coming up.

color: blue and filled: true
The area i= 54.0
The perimeter is 30.0

m

= (i e B[E

COP 3330: Classes In Java—Part 1 Page 28

7
© Dr. Mark Llewellyn gjj

More Details On Inheritance In Java

« Contrary to the conventional interpretation , a
subclass Is not a subset of its superclass. In fact,
a subclass typically contains more information
and functions than its superclass. This Is
because the subclass needs the variables and/or
methods that define the special properties and/or
behaviors of the specialized objects that are
member of the subclass.

« Remember that every instance of an object in a
subclass Is also (first and foremost) an instance
of an object of its superclass as well.

’

COP 3330: Classes In Java - Part 1 Page 29 © Dr. Mark Llewellyn g").

More Details On Inheritance In Java

* Not all is-a relationships should be modeled using
Inheritance. For example, a square is-a rectangle, but
you should not declare a Square class to extend the
Rectangle class. Why?

» Because there is nothing to extend (or supplement)
from a rectangle to a square. In other words, a square
object has no additional properties or behaviors that
would in any way differentiate it from a rectangle.

— Note: you might however, create a Square class that extends
the GeometricObject class, if you really wanted to view
rectangles and squares differently.

’

COP 3330: Classes In Java - Part 1 Page 30 © Dr. Mark Llewellyn g").

GeometricObject

- color: String
- filled: boolean
- dateCreated: java.util.Date

+ GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date

+ toString(): String

Circle

- radius: double

Rectangle

+ Circle()

+ Circle(radius: double)

+ getRadius(): double

+ setRadius(radius: double): void
+ getArea(): double

+ getPerimeter(): double

+ getDiameter(): double

+ printCircle(): void

- width: double
- height: double

+ Rectangle()

+ Rectangle(width: double, height: double)
+ getWidth(): double

+ setWidth(width: double): void

+ getHeigth(): double

+ setHeight(height: double): void

+ getArea(): double

+ getPerimeter(): double

JZAN

COP 3330: Classes In Java—Part 1

Page 31

© Dr. Mark Llewellyn

GeometricObject

- color: String
- filled: boolean
- dateCreated: java.util.Date

+ GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date
+ toString(): String

PROPER USE
OF INHERITANCE

JZAN
I I I
Circle Rectangle Square
- radius: double — width: double - width: double

+ Circle()

+ Circle(radius: double)

+ getRadius(): double

+ setRadius(radius: double): void
+ getArea(): double

+ getPerimeter(): double

+ getDiameter(): double

+ printCircle(): void

- height: double

- height: double

+ Rectangle()

+ getWidth(): double

+ setWidth(width: double): void
+ getHeigth(): double

+ setHeight(height: double): void
+ getArea(): double

+ getPerimeter(): double

+ Rectangle(width: double, height: double)

+ Square()

+ Square(side: double)

+ getSide(): double

+ setSide(width: double): void
+ getArea(): double

+ getPerimeter(): double

COP 3330: Classes In Java—Part 1

Page 32

© Dr. Mark Llewellyn

7
()
S,

More Details On Inheritance In Java

* Inheritance can be used to model the is-a relationship
between two classes of objects. Do not blindly extend a
class just for the sake of reusing methods.

« For example, it makes no sense for a Tree class to
extend a Person class, even though they might share
common properties such as height, weight, and age, etc.
This would seriously detract from the readabilty and
maintainability of the software.

* A subclass and its superclass should have the is-a
relationship.

”

COP 3330: Classes In Java—Part 1 Page 33 © Dr. Mark Llewellyn g’);

Person

- height: integer
- weight: integer
- age: integer

/\

Wrong use of inheritance because a
tree is not a person. The two classes
do not have an is-a relationship, so

this hierarchy makes no logical sense

COP 3330: Classes In Java—Part 1

Page 34

© Dr. Mark Llewellyn

Using the super Keyword

« A subclass inherits accessible data fields and
methods from its superclass, but It does not
Inherit constructors.

However, superclass constructors are
accessible to the subclass through the use of

the keyword super.

The keyword super refers to the superclass in
which 1t which It appears. It can be used In
two ways:

1. Toinvoke (call) a superclass constructor.

2. To invoke a superclass method.

COP 3330: Classes In Java—Part 1 Page 35 © Dr. Mark Llewellyn

Invoking Superclass Constructors

« The syntax to invoke a superclass constructor is:

super (), Or super (parameters)

« The first case invokes the no-arg constructor of its
superclass, and the second case invokes the superclass
constructor that matches the argument list.

* %% |IMPORTANT ***

The statement super () Or super (parameters)
must appear as the first line of the subclass

constructor — no exceptions! This is the only way to
INnvoke a superclass constructor.

#
COP 3330: Classes In Java—Part 1 Page 36 © Dr. Mark Llewellyn @j

Invoking Superclass Constructors

A constructor can invoke an overloaded constructor or Its
superclass’s constructor. If neither of them Is invoked
explicitly, the compiler puts super() as the first statement in the

constructor.
public A() {

blic A .
public A() { < equivalent > super () ;

})

public A (double d) { public A (double d) {

//some statements <::::: equivalent C::::> super () ;

//some statements

}

In any case, constructing an instance of a class invokes the
constructors of all the superclasses along the inheritance chain.
A superclass’s constructor is called before the subclass’s

constructor. This is called constructor chaining.

#
COP 3330: Classes In Java—Part 1 Page 37 © Dr. Mark Llewellyn @j

Constructor
Chaining
Example

Employee Consider this
AN hierarchy, which

Implies that an
Employee is-a
Faculty Person and a
Faculty is-a
Employee (and
thus 1 s—a Person)

COP 3330: Classes In Java—Part 1 Page 38 © Dr. Mark Llewellyn

L

.-*'EI Circle.java [’m Rectangle.java (m TestCircleRectangle. [Constructor

® /* Constructor chaining example — Summer 2017 Cha|n|ng
public class Faculty extend=s Employee {
= public =s=tatic void main (S5tring[] arg=s) { Example

new Faculty(),/—/—m——

Execution begins here

}
= public Facultvy () {
Svestem.ocub.println{("Invoke Faculty no—arg constructor™):;

clas=s Employee extends Person {
= poblic Employee () 1
thi=("Invoke Employvee overloaded constructoxr™):;
System.cut.printin("Invoke Emnployvee no—arg constructor™) ;
}
= poblic Employee (String =) {
Syvstem.out.printlni(=s) ;

clas=s Per=son {
= public Per=soni() {
System.ocub.println{"Invoke Person no—arg constructor™):;

COP 3330: Classes In Java—Part 1 Page 39 © Dr. Mark Llewellyn

Constructor
Chaining
Example

e E @ 5 Q- Q- Ll

@G- @+~ P S

o B v ¥0 o -

El Console 37 X% G EBE[EE) =% 2~~~ =0)

<terminated> Faculty [Java Application] C:\Program Files\Java'jreb\bin'javaw.exe (K

F

= Java - Classes In Java/src/Facultyjava - Eclipse e |

File Edit 5Source Refactor Mawvigate 5Search Project Run

Invoke Person no-—-arg constructor
Invoke Employee overloaded constructor
Invoke Employvee no—arg constructor
Invoke Faculty no—-arg constructor

s [@ &[5

COP 3330: Classes In Java—Part 1 Page 40 © Dr. Mark Llewellyn

Invoking Superclass Constructors

If a class Is designed to be extended, it Is better to provide a
no-arg constructor to avoid programming errors. Consider the
following case...What is the output of this program?

public class Apple extends Fruit {
}

class Fruit {
public Fruit (String name) {
System.out.println (“Fruit constructor is invoked”);

}
}

Since no constructor is explicitly defined in Apple, Apple’s default
no-arg constructor is declared implicitly. Since Apple is a subclass
of Fruit, Apple’s default constructor automatically invokes Fruit’s
no-arg constructor. However, Fruit does not have a no-arg
constructor since it has an explicit constructor defined. Therefore,
the program cannot be compiled.

#
COP 3330: Classes In Java—Part 1 Page 41 © Dr. Mark Llewellyn @j

Invoking Superclass Methods

The keyword super Is also used to reference a method other
than the constructor in the superclass.

The syntax IS: super.method (parameters) ;

As an example, suppose in our earlier example (persons,
employees, and faculty) that the Employee class contained a
public method getSalary (). If you wanted to obtain the
salary of a faculty person, you could do so within the
Faculty class with a statement such as:

facultySalary = super.getSalary();

Note: You can use super.p () to invoke the method p ()
defined in the superclass. However, suppose A extends B and
B extends C and method p () Is defined Iin C. It Is not
possible from within A to invoke super.super.p () ; This
Is not allowed in Java.

¢

COP 3330: Classes In Java - Part 1 Page 42 © Dr. Mark Llewellyn g").

Overriding Methods

A subclass inherits methods from a superclass. Sometimes it is
necessary for the subclass to modify the implementation of a
method defined in the superclass (i.e., to provide the
specialized behavior peculiar to the subclass). This is referred
to as method overriding.

As an example, consider the toString method In the
GeometricObject class of our earlier example. This
method returns the string representation for a geometric object.
Suppose that within the Circle class we want to provide an
Implementation of the toString method to specialize the
output for a circle object. (Do this yourself for practice!)

//override the toString method defined in GeometricObject
public String toString() {

return super.toString() + “\nradius is: “ + radius;

COP 3330: Classes In Java - Part 1 Page 43 © Dr. Mark Llewellyn g").

Some Additional Issues On Overriding Methods

« Private data fields in a superclass are not accessible
outside the class, Therefore, they cannot be used
directly in a subclass. They can, however, be
accessed/mutated through public accessor/mutator
methods If defined in the superclass.

 An instance method can be overridden only if it is
accessible. Thus, a private method cannot be
overridden, because it Is not accessible outside its
own class. If a method defined in a subclass is private
In its superclass, the two methods are completely
unrelated.

’

COP 3330: Classes In Java - Part 1 Page 44 © Dr. Mark Llewellyn g").

Some Additional Issues On Overriding Methods

« Like an instance method, a static method can be inherited.
However, a static method cannot be overridden. If a static
method defined in the superclass is redefined in a subclass,
the method defined in the superclass is hidden. The hidden

static methods can be iInvoked using the syntax
SuperClassName.staticMethodName.

* Do not confuse the terms overridding and overloading when
applied to methods. Overloading a method i1s a way to
provide more than one method with the same name but with
different signatures to distinguish them. To override a
method, the method must be defined in the subclass using
the same signature and same return type as In its superclass.

’

COP 3330: Classes In Java - Part 1 Page 45 © Dr. Mark Llewellyn g").

Difference between Overriding and Overloading

public class TestOverriding {
public static void main (String[] args) {
A a = new A();
a.p(10); Example of method

/ overridding
}//end TestOverriding

class B {
public void p (int 1) {
}
}//end B
class A extends B {
//this method overrides the method in B

TestOverriding

public void p (int 1) {
System.out.println(1i);

}
}//end A

COP 3330: Classes In Java—Part 1 Page 46 © Dr. Mark Llewellyn

Difference between Overriding and Overloading

public class TestOverloading {
public static void main (String[] args) {

A2 a = new A2();
a.p(10); Example of method

} overloading

}//end TestOverloading
class B2 {
public void p (int 1) {
}
}//end B2

class A2 extends B2 {
//this method overloads the method in B2

TestOverloading

public void p (double 1) {
System.out.println(1i);

}
}//end A2

COP 3330: Classes In Java—Part 1 Page 47 © Dr. Mark Llewellyn

