
COP 3330:  Classes In Java – Part 1             Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Classes In Java – Part 1

Inheritance 

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011



COP 3330:  Classes In Java – Part 1             Page 2 © Dr. Mark Llewellyn

Classes In Java

• A class is a group of objects that share common state
and behavior. A class is an abstraction or description of
an object.

• An object, on the other hand, is a concrete entity that
exists in space and time.

• OO languages use classes to define the state and
behavior associated with objects and to provide a means
to create the objects that make up a program.

• Thus, the class acts as a blueprint or template from
which objects can be created (instantiated in OO terms).

– While car is a class, my car and your car are two instances
of the class.



COP 3330:  Classes In Java – Part 1             Page 3 © Dr. Mark Llewellyn

Classes In Java

• We’ve already seen the UML notation for describing a

class, and we will continue to use and expand on this

notation as we delve deeper into classes in Java.

• One thing that you want to get straight now is that

developing a class and using a class are two distinct

tasks.

• Developing a class, ultimately, requires that you know

all of the inner details of the class and how it works.

• Using a class does not require that you know anything

about how the class actually works, only in how you

can utilize the class to solve the problem at hand.



COP 3330:  Classes In Java – Part 1             Page 4 © Dr. Mark Llewellyn

Classes In Java

• As an example of this concept, consider the UML diagram of a
Loan class as shown below:

+ Loan()

+ Loan(annualInterestRate: double, numberOfYears: int, loanAmount:double)

+ getAnnualInterestRate(): double

+ getNumberOfYears(): int

+ getLoanAmount(): double

+ getLoanDate(): java.util.Date

+ setAnnualInterestRate(annualInterestRate: double): void

+ setNumberOfYears(numberOfYears: int): void

+ setLoanAmount(loanAmount: double): void

+ getMonthlyPayment(): double

+ getTotalPayment(): double

− annualInterestRate: double

− numberOfYears: int

− loanAmount: double

− loanDate: java.util.Date

Loan



COP 3330:  Classes In Java – Part 1             Page 5 © Dr. Mark Llewellyn

Classes In Java

• Now, let’s write a class that uses the Loan class without

ever worrying about how the loan class is actually

implemented.

• In other words, we can use this class without knowing

anything more about the class than the methods (and

variables) that are available to us outside of the class.

The implementation details of this, for example, how

the monthly payment is calculated, are not important for

us to be able to utilize the class.

• If you want to run the test class, I’ve put the

Loan.java source code file on the course web site.



COP 3330:  Classes In Java – Part 1             Page 6 © Dr. Mark Llewellyn



COP 3330:  Classes In Java – Part 1             Page 7 © Dr. Mark Llewellyn

Two Different Executions 
of the TestLoanClass

Application



COP 3330:  Classes In Java – Part 1             Page 8 © Dr. Mark Llewellyn

Classes In Java

• To fully illustrate this point, I’ve created a class named
WindChill as defined in the UML diagram shown below. I’ve
implemented this class and placed the WindChill.class file
on the course code page. (PRACTICE PROBLEM #2) – I want
you to write a small test program that will use this class to
determine the wind chill for various conditions that you will
input. We’ll see how you did next class.

WindChill

− theTemp: double

− the WindSpeed: double

− windChillTemperature: double

− whatItFeelsLike: int

+ WindChill(tempinF:double, windSpeedInMph: double)

+ getTemperature(): double

+ getWindSpeed(): double

+ getThePerceivedTemperature(): int



COP 3330:  Classes In Java – Part 1             Page 9 © Dr. Mark Llewellyn

Inheritance Revisited

• OO languages allow you to derive new classes from
existing classes via inheritance.

• Inheritance is a powerful component of OO languages
that allow the software developer to reuse software.

• Without knowing it (perhaps), you have already been
using inheritance when you developed your first
programs for this course. This is because every class in
Java is inherited from an existing class, either explicitly
or implicitly. All of the classes you’ve constructed so
far, as well as all of those in the notes have implicitly
extended (inherited from) the java.lang.Object

class.



COP 3330:  Classes In Java – Part 1             Page 10 © Dr. Mark Llewellyn

Inheritance Revisited



COP 3330:  Classes In Java – Part 1             Page 11 © Dr. Mark Llewellyn

Inheritance Revisited

• In Java terminology, a class C1 extended from another class C2
is called a subclass, and C2 is called the superclass.

• A superclass can also be called a parent class or a base class, and
a subclass may be referred to as a child class, extended class, or a
derived class.

C2 (superclass)

C1 (subclass)

When two classes are related 
by inheritance, the is-a 

relationship will apply to the 

classes.  

The is-a relationship holds 

between two classes when 

one class is a specialized 

instance of the second. 



COP 3330:  Classes In Java – Part 1             Page 12 © Dr. Mark Llewellyn

Five Forms Of Inheritance

Form of Inheritance Description

Specification

The superclass defines behavior that is implemented in the subclass but not 

in the superclass; this provides a way to guarantee that the subclass 

implements the same behavior.  (In short, the superclass defines what the 

subclass must do, but does not specify how it is to be done.)

Specialization

The subclass is a specialized form of the superclass but satisfies the 

specifications of the superclass in all relevant aspects.  (In short, there is an 

is-a relationship between the subclass and the superclass.)

Extension
The subclass adds new functionality to the parent class but does not change 

any inherited behavior.

Limitation

The subclass restricts the use of some behavior inherited from the 

superclass.  Typically, the inherited behavior that is limited is set as a no-

operation in the subclass, i.e., the operation still exists but has no effect on 

the state of the object on which it is invoked.

Combination

(Multiple Inheritance)

The subclass inherits features from more than one superclass.  This is not 

implemented in Java, although through the use of interfaces there are ways 

around this limitation in Java.



COP 3330:  Classes In Java – Part 1             Page 13 © Dr. Mark Llewellyn

Inheritance In Java

• Suppose we are given the task of designing some

classes to model geometric objects like circles, square,

and rectangles.

• These geometric objects share many common properties

and behaviors. They can be drawn in a certain color

and be either filled or unfilled.

• What is the best way to design this set of classes?

(HINT: use inheritance!)

• Using a top-down approach, meaning let’s think in

general terms first and then move to the more specific

(specialization).



COP 3330:  Classes In Java – Part 1             Page 14 © Dr. Mark Llewellyn

Inheritance In Java

• We’ll consider the general case of geometric objects
first, and define a class GeometricObject, that will
be used to model all geometric objects.

GeometricObject

− color: String  //color of the object (default: white)

− filled: boolean //filled or not filled – (default: false)

− dateCreated: java.util.Date  //date of creation

+ GeometricObject()  //constructor

+ getColor(): String  //returns the color

+ setColor(color: String): void  //sets a new color

+ isFilled(): boolean  //returns the filled property

+ setFilled(filled: boolean): void  //sets a new filled property

+ getDateCreated(): java.util.Date  //returns the dateCreated

+ toString(): String  // returns a string representation of the object

UML class diagram for 

GeometricObject class



COP 3330:  Classes In Java – Part 1             Page 15 © Dr. Mark Llewellyn

Inheritance In Java

• Now if we consider a circle, we realize that it is just a
special case of a geometric object. Hence, while it has
some special properties of its own (those that make it a
circle), it also shares certain properties with all other
geometric objects.

• Thus, using inheritance allows us to view a circle as
simply a special case of the more general geometric
object. In this way, we can allow the circle objects to
share its common properties and methods with other
geometric objects.

• It makes sense to define a Circle class than extends
the GeometricObject class.



COP 3330:  Classes In Java – Part 1             Page 16 © Dr. Mark Llewellyn

Inheritance In Java

• Here is our definition for the Circle class. Notice at this point,
that all we have is the Circle class and we have not yet shown
that it extends or is related to the GeometricObject class.
We’ll do that in a minute.

Circle

− radius: double

+ Circle()  // generic constructor

+ Circle(radius: double)  //overloaded constructor

+ getRadius(): double  //returns the radius

+ setRadius(radius: double): void  //sets a new radius

+ getArea(): double  //returns the area of the circle

+ getPerimeter(): double  //returns the perimeter

+ getDiameter(): double  //returns the diameter

+ printCircle(): void  // prints the properties of the circle

UML class diagram for Circle 

subclass



COP 3330:  Classes In Java – Part 1             Page 17 © Dr. Mark Llewellyn

Inheritance In Java

• Now if we consider a rectangle object, we

realize that, just like the circle object, it is just a

special case of a geometric object.

• Thus, we’ll define a rectangle class that will

inherit from the geometric object class in exactly

the same way that the circle class will inherit

from the geometric object class.

• Just as it did for the circle objects, it makes
sense to define a Rectangle class than

extends the GeometricObject class.



COP 3330:  Classes In Java – Part 1             Page 18 © Dr. Mark Llewellyn

Inheritance In Java

• Here is our definition for the Rectangle class. Notice at this
point, that all we have is the Rectangle class and we have not
yet shown that it extends or is related to the
GeometricObject class. We’ll do that next.

Rectangle

− width: double

− height: double

+ Rectangle()  // generic constructor

+ Rectangle(width: double, height: double)  //overloaded constructor

+ getWidth(): double  //returns the width

+ setWidth(width: double): void  //sets a new width

+ getHeight(): double  //returns the height

+ setHeight(height: double): void  //sets a new height

+ getArea(): double  //returns the area

+ getPerimeter(): double  //returns the perimeter

UML class diagram for Rectangle 

subclass



COP 3330:  Classes In Java – Part 1             Page 19 © Dr. Mark Llewellyn

Rectangle

− width: double

− height: double

+ Rectangle()

+ Rectangle(width: double, height: double)

+ getWidth(): double  

+ setWidth(width: double): void  

+ getHeigth(): double

+ setHeight(height: double): void

+ getArea(): double

+ getPerimeter(): double

Circle

− radius: double

+ Circle()

+ Circle(radius: double)

+ getRadius(): double  

+ setRadius(radius: double): void

+ getArea(): double

+ getPerimeter(): double

+ getDiameter(): double

+ printCircle(): void

GeometricObject

− color: String

− filled: boolean 

− dateCreated: java.util.Date

+ GeometricObject() 

+ getColor(): String

+ setColor(color: String): void  

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date

+ toString(): String



COP 3330:  Classes In Java – Part 1             Page 20 © Dr. Mark Llewellyn

GeometricObject class



COP 3330:  Classes In Java – Part 1             Page 21 © Dr. Mark Llewellyn

GeometricObject class

( continued )



COP 3330:  Classes In Java – Part 1             Page 22 © Dr. Mark Llewellyn

The Java keyword extends is 

used to create a subclass in 

Java.  The name of the class 

that is being extended (i.e., the 

superclass) immediately follows 

the keyword extends.

Circle class



COP 3330:  Classes In Java – Part 1             Page 23 © Dr. Mark Llewellyn

Circle class

( continued )



COP 3330:  Classes In Java – Part 1             Page 24 © Dr. Mark Llewellyn

Rectangle class



COP 3330:  Classes In Java – Part 1             Page 25 © Dr. Mark Llewellyn

Rectangle class

( continued )



COP 3330:  Classes In Java – Part 1             Page 26 © Dr. Mark Llewellyn

TestCircleRectangle class –

A driver class



COP 3330:  Classes In Java – Part 1             Page 27 © Dr. Mark Llewellyn



COP 3330:  Classes In Java – Part 1             Page 28 © Dr. Mark Llewellyn

Notice that the superclass 

object is created first followed 

by the subclass object.  A 
Circle object is-a 

GeometricObject. More 

details on this (constructor 
chaining) coming up.



COP 3330:  Classes In Java – Part 1             Page 29 © Dr. Mark Llewellyn

More Details On Inheritance In Java

• Contrary to the conventional interpretation , a
subclass is not a subset of its superclass. In fact,
a subclass typically contains more information
and functions than its superclass. This is
because the subclass needs the variables and/or
methods that define the special properties and/or
behaviors of the specialized objects that are
member of the subclass.

• Remember that every instance of an object in a
subclass is also (first and foremost) an instance
of an object of its superclass as well.



COP 3330:  Classes In Java – Part 1             Page 30 © Dr. Mark Llewellyn

More Details On Inheritance In Java

• Not all is-a relationships should be modeled using
inheritance. For example, a square is-a rectangle, but
you should not declare a Square class to extend the
Rectangle class. Why?

• Because there is nothing to extend (or supplement)
from a rectangle to a square. In other words, a square
object has no additional properties or behaviors that
would in any way differentiate it from a rectangle.

– Note: you might however, create a Square class that extends
the GeometricObject class, if you really wanted to view
rectangles and squares differently.



COP 3330:  Classes In Java – Part 1             Page 31 © Dr. Mark Llewellyn

Rectangle

− width: double

− height: double

+ Rectangle()

+ Rectangle(width: double, height: double)

+ getWidth(): double  

+ setWidth(width: double): void  

+ getHeigth(): double

+ setHeight(height: double): void

+ getArea(): double

+ getPerimeter(): double

Circle

− radius: double

+ Circle()

+ Circle(radius: double)

+ getRadius(): double  

+ setRadius(radius: double): void

+ getArea(): double

+ getPerimeter(): double

+ getDiameter(): double

+ printCircle(): void

GeometricObject

− color: String

− filled: boolean 

− dateCreated: java.util.Date

+ GeometricObject() 

+ getColor(): String

+ setColor(color: String): void  

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date

+ toString(): String

Square

WRONG USE 

OF INHERITANCE



COP 3330:  Classes In Java – Part 1             Page 32 © Dr. Mark Llewellyn

Rectangle

− width: double

− height: double

+ Rectangle()

+ Rectangle(width: double, height: double)

+ getWidth(): double  

+ setWidth(width: double): void  

+ getHeigth(): double

+ setHeight(height: double): void

+ getArea(): double

+ getPerimeter(): double

Circle

− radius: double

+ Circle()

+ Circle(radius: double)

+ getRadius(): double  

+ setRadius(radius: double): void

+ getArea(): double

+ getPerimeter(): double

+ getDiameter(): double

+ printCircle(): void

GeometricObject

− color: String

− filled: boolean 

− dateCreated: java.util.Date

+ GeometricObject() 

+ getColor(): String

+ setColor(color: String): void  

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date

+ toString(): String

Square

− width: double

− height: double

+ Square()

+ Square(side: double)

+ getSide(): double  

+ setSide(width: double): void  

+ getArea(): double

+ getPerimeter(): double

PROPER USE 

OF INHERITANCE



COP 3330:  Classes In Java – Part 1             Page 33 © Dr. Mark Llewellyn

More Details On Inheritance In Java

• Inheritance can be used to model the is-a relationship

between two classes of objects. Do not blindly extend a

class just for the sake of reusing methods.

• For example, it makes no sense for a Tree class to

extend a Person class, even though they might share

common properties such as height, weight, and age, etc.

This would seriously detract from the readabilty and

maintainability of the software.

• A subclass and its superclass should have the is-a

relationship.



COP 3330:  Classes In Java – Part 1             Page 34 © Dr. Mark Llewellyn

WRONG USE 

OF INHERITANCE

Person

Tree

Wrong use of inheritance because a 

tree is not a person.  The two classes 
do not have an is-a relationship, so 

this hierarchy makes no logical sense

− height: integer

− weight: integer

− age: integer



COP 3330:  Classes In Java – Part 1             Page 35 © Dr. Mark Llewellyn

Using the super Keyword

• A subclass inherits accessible data fields and
methods from its superclass, but it does not
inherit constructors.

• However, superclass constructors are
accessible to the subclass through the use of
the keyword super.

• The keyword super refers to the superclass in
which it which it appears. It can be used in
two ways:

1. To invoke (call) a superclass constructor.

2. To invoke a superclass method.



COP 3330:  Classes In Java – Part 1             Page 36 © Dr. Mark Llewellyn

Invoking Superclass Constructors

• The syntax to invoke a superclass constructor is:

super(), or super(parameters)

• The first case invokes the no-arg constructor of its

superclass, and the second case invokes the superclass

constructor that matches the argument list.

* * *   IMPORTANT   * * *

The statement super() or super(parameters)

must appear as the first line of the subclass

constructor – no exceptions! This is the only way to

invoke a superclass constructor.



COP 3330:  Classes In Java – Part 1             Page 37 © Dr. Mark Llewellyn

Invoking Superclass Constructors

• A constructor can invoke an overloaded constructor or its
superclass’s constructor. If neither of them is invoked
explicitly, the compiler puts super() as the first statement in the
constructor.

public A() {

}

public A() {

super();

}

equivalent

public A(double d) {

//some statements

}

public A(double d) {

super();

//some statements

}

equivalent

• In any case, constructing an instance of a class invokes the
constructors of all the superclasses along the inheritance chain.
A superclass’s constructor is called before the subclass’s
constructor. This is called constructor chaining.



COP 3330:  Classes In Java – Part 1             Page 38 © Dr. Mark Llewellyn

Constructor 
Chaining

ExamplePerson

Employee

Faculty

Consider this 

hierarchy, which 

implies that an 

Employee is-a

Person and a 

Faculty is-a 

Employee (and 

thus is-a Person)



COP 3330:  Classes In Java – Part 1             Page 39 © Dr. Mark Llewellyn

Constructor 
Chaining

Example
Execution begins here



COP 3330:  Classes In Java – Part 1             Page 40 © Dr. Mark Llewellyn

Constructor 
Chaining

Example



COP 3330:  Classes In Java – Part 1             Page 41 © Dr. Mark Llewellyn

Invoking Superclass Constructors

• If a class is designed to be extended, it is better to provide a

no-arg constructor to avoid programming errors. Consider the

following case…What is the output of this program?

public class Apple extends Fruit {

}

class Fruit {

public Fruit(String name) {

System.out.println(“Fruit constructor is invoked”);

}

}

• Since no constructor is explicitly defined in Apple, Apple’s default

no-arg constructor is declared implicitly. Since Apple is a subclass

of Fruit, Apple’s default constructor automatically invokes Fruit’s

no-arg constructor. However, Fruit does not have a no-arg

constructor since it has an explicit constructor defined. Therefore,

the program cannot be compiled.



COP 3330:  Classes In Java – Part 1             Page 42 © Dr. Mark Llewellyn

Invoking Superclass Methods

• The keyword super is also used to reference a method other
than the constructor in the superclass.

• The syntax is: super.method(parameters);

• As an example, suppose in our earlier example (persons,
employees, and faculty) that the Employee class contained a
public method getSalary(). If you wanted to obtain the
salary of a faculty person, you could do so within the
Faculty class with a statement such as:

facultySalary = super.getSalary();

• Note: You can use super.p() to invoke the method p()

defined in the superclass. However, suppose A extends B and
B extends C and method p() is defined in C. It is not
possible from within A to invoke super.super.p(); This
is not allowed in Java.



COP 3330:  Classes In Java – Part 1             Page 43 © Dr. Mark Llewellyn

Overriding Methods

• A subclass inherits methods from a superclass. Sometimes it is
necessary for the subclass to modify the implementation of a
method defined in the superclass (i.e., to provide the
specialized behavior peculiar to the subclass). This is referred
to as method overriding.

• As an example, consider the toString method in the
GeometricObject class of our earlier example. This
method returns the string representation for a geometric object.
Suppose that within the Circle class we want to provide an
implementation of the toString method to specialize the
output for a circle object. (Do this yourself for practice!)

//override the toString method defined in GeometricObject

public String toString() {

return super.toString() + “\nradius is: “ + radius;

}



COP 3330:  Classes In Java – Part 1             Page 44 © Dr. Mark Llewellyn

Some Additional Issues On Overriding Methods

• Private data fields in a superclass are not accessible

outside the class, Therefore, they cannot be used

directly in a subclass. They can, however, be

accessed/mutated through public accessor/mutator

methods if defined in the superclass.

• An instance method can be overridden only if it is

accessible. Thus, a private method cannot be

overridden, because it is not accessible outside its

own class. If a method defined in a subclass is private

in its superclass, the two methods are completely

unrelated.



COP 3330:  Classes In Java – Part 1             Page 45 © Dr. Mark Llewellyn

Some Additional Issues On Overriding Methods

• Like an instance method, a static method can be inherited.

However, a static method cannot be overridden. If a static

method defined in the superclass is redefined in a subclass,

the method defined in the superclass is hidden. The hidden

static methods can be invoked using the syntax

SuperClassName.staticMethodName.

• Do not confuse the terms overridding and overloading when

applied to methods. Overloading a method is a way to

provide more than one method with the same name but with

different signatures to distinguish them. To override a

method, the method must be defined in the subclass using

the same signature and same return type as in its superclass.



COP 3330:  Classes In Java – Part 1             Page 46 © Dr. Mark Llewellyn

Difference between Overriding and Overloading

public class TestOverriding {

public static void main (String[] args) {

A a = new A();

a.p(10);

}

}//end TestOverriding

class B {

public void p (int i) {

}

}//end B

class A extends B {

//this method overrides the method in B

public void p (int i) {

System.out.println(i);

}

}//end A

Example of method 

overridding

TestOverriding B

A



COP 3330:  Classes In Java – Part 1             Page 47 © Dr. Mark Llewellyn

Difference between Overriding and Overloading

public class TestOverloading {

public static void main (String[] args) {

A2 a = new A2();

a.p(10);

}

}//end TestOverloading

class B2 {

public void p (int i) {

}

}//end B2

class A2 extends B2 {

//this method overloads the method in B2

public void p (double i) {

System.out.println(i);

}

}//end A2

Example of method 

overloading

TestOverloading B2

A2


